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Abstract. The structural phase transitions in [N(CH3)4]CdCl3 were investigated by means of
adiabatic calorimetry and thermal expansion measurements. Two phase transitions have been
studied on cooling and on heating at about 104 K and 118 K. The shapes of the observed specific
heat anomalies, as well as the existence of thermal hysteresis, confirm the first-order character
previously assigned to these phase transitions. From the experimental data and the harmonic
specific heat obtained from the known frequencies of the vibrational modes, a calculation of the
Grüneisen parameter as a function of the temperature is also given. Finally, the suitability of
different Landau potentials for the two phase transitions is briefly discussed.

1. Introduction

In the field of what is known as quasi-one-dimensional materials, there has been considerable
interest in compounds with the common chemical formula [N(CH3)4]MX 3, where M is a
divalent metal such as Mn, Zn, Cd, and Hg, and X is a halogen [1]. Many of these
compounds exhibit successive structural phase transitions which are associated with the
reorientational dynamics of the tetramethylammonium groups, [N(CH3)4] (hereafter TMA)
[2–6]. Recently, a considerable effort has been made both in experimental and theoretical
studies in order to achieve an understanding of the dynamical behaviour of these TMA
groups, since they are mainly responsible for the order–disorder phase transitions observed.
At room temperature, these compounds have an isomorphous hexagonal structure (space
group P63/m and Z = 2 formula units per primitive unit cell). These compounds
contain infinite linear chains of face-sharing MX6 octahedra (· · · M–X3–M–X3 · · ·) running
parallel to thec-axis. The TMA groups are orientationally disordered and occupy the space
between the MX6 chains [7]. Tetramethylammonium manganese chloride, [N(CH3)4]MnCl3
(commonly abbreviated as TMMC), is perhaps the most extensively studied compound of
this group, principally because of its quasi-one-dimensional magnetic properties.

Tetramethylammonium cadmium chloride, [N(CH3)4]CdCl3 (TMCC), has also received
much attention, and has been extensively investigated by means of several techniques such
as Raman scattering [2, 3, 5, 8], x-ray diffraction [2, 3, 9], EPR [10], Brillouin scattering
[6], NMR [4], thermal expansion [11], specific heat [12], and dielectric and ultrasonic
measurements [1, 3]. At room temperature, TMCC crystallizes in a hexagonalP63/m
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structure withZ = 2 (phase I). The lattice constants for this crystal area0 = 9.138 Å, c0 =
6.723 Å, and Cd–Cl= 2.644 Å [2, 3, 13].

At high temperature, TMCC exhibits a prototype structure with space groupP63/mmc

andZ = 2 (the parent phase I′). The phase transition from phase I′ (P63/mmc) to phase
I (P63/m), at aboutT = 400 K, is found to be of second order. Both phases exhibit
orientational disorder of the TMA groups, coupled to translational disorder of the CdCl3

octahedral chains [5, 6]. Additionally, TMCC presents two low-temperature structural phase
transitions. The first one, taking place atT = 118 K, connects the disordered hexagonal
phase (I) to an ordered monoclinic phase (II) with space groupP21/m andZ = 2. In
this phase three types of domain characteristic of the ferroelastic phase transition have been
found. The second transition, at 104 K, leads to another monoclinic phase (III), with space
groupP21/b andZ = 12 [9]. The unit cell of phase (III) is related to that of phase (I)
by a doubling of the lattice constant along theb-axis, together with a trebling of the lattice
constant along thec-axis (aIII = aI, bIII = 2bI, cIII = 3cI). These two phase transitions are
of first order [3, 5, 8, 9].

In addition, another structural phase transition has been reported to occur at about 150 K
[2, 6]. However it was not confirmed by any further measurement, so its existence remains
unclear. Thus, the following phase transition sequence has been established at normal
pressure:

I′

P63/mmc (Z = 2)

400 K

←→
I

P63/m (Z = 2)

118 K

←→
II

P21/m (Z = 2)

104 K

←→
III

P21/b (Z = 12).

On the other hand, Peercyet al [3], Couzi and Mlik [14], and Gesi [1] have discussed
the relationship between various TMMC-like compounds. The equivalent phases present
in TMMC, TMMB, and TMCC strongly suggest the possibility of finding a unified
picture of the phase transition sequences in TMMC-like compounds, as was found for
the [N(CH3)4]2MX 4-type compounds. However, the variety of the structures appearing in
the low-temperature ordered phases indicates that these relationships may not be simple.
Also, detailed structural knowledge of the low-temperature monoclinic phases of TMCC is
still lacking. Therefore, this work is presented as a contribution to establishing the unified
description of the whole family on better experimental grounds.

In this work we present calorimetric and dilatometric studies of the TMCC compound
in the temperature range from 60 K to 300 K, especially around the transitions interval.
Up to now, reported calorimetric data have been limited to temperatures below 52 K [12].
Our specific heat and thermal expansion measurements confirm that the TMCC compound
shows two first-order phase transitions in this temperature range. These results permit us to
verify the order–disorder character assigned to these phase transitions. We also discuss the
problems related to the Landau-type description of TMCC in the framework of a general
model for this family of compounds.

2. Experimental procedure

Colourless TMCC single crystals in the form of prisms elongated along thec-axis were
grown by the dynamic method at 305 K from saturated aqueous solution prepared with
stoichiometric amounts of [N(CH3)4]Cl and CdCl2. Their chemical composition was
confirmed by atomic spectroscopy.

Specific heat measurements from 60 K to room temperature have been performed using
an automatic adiabatic calorimeter described in reference [15]. We have used a powder
sample of TMCC to fill the calorimeter vessel. This vessel was also filled with helium gas
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at low pressure to favour a good thermal equilibrium after each heating period. As we have
described in previous works, two different methods were used to measure the specific heat in
this range: discontinuous heating (pulse) and continuous heating (thermogram) techniques.
Both methods give an accuracy better than 0.1% for the specific heats obtained.

Thermal expansion of TMCC was measured using a standard dilatometer in dynamic
conditions, in the temperature range from 80 K to 300 K. Colourless single crystals in the
form of prisms with dimensions of about 1× 1× 3 cm3 have been used. Various cooling
and heating measurements with rates from 1◦C min−1 to 10 ◦C min−1 were made along
the c- anda-axes.

Figure 1. The specific heat of TMCC from 60 to 260 K showing two first-order phase transitions
at 104.2 K (Cp = 80R) and 118.6 K (Cp = 520R). The experimental data were obtained by the
pulse technique, and from dynamic thermograms with heating rates between 1.5 and 2.8 K h−1.

3. Results and discussion

The experimental specific heat results are presented in figure 1. As expected, two phase
transitions are found between 100 and 120 K. In order to obtain a better definition of the
specific heat curve in this temperature range, various thermograms were obtained in intervals
ranging from 80 K to 107 K, 116 K to 123 K, and 80 to 123 K, with heating rates varying
between 1.5 and 2.8 K h−1. As stated above, two specific heat peaks appear, at 104.2 K
and 118.6 K. The apparent sharpness of theCp-curve clearly indicates the first-order nature
of these phase transitions.

In order to determine the values of the thermodynamic functions associated with
these phase transitions (‘excess’ quantities), an adequate estimation of the base-line is
required to separate the contribution of the phase transition mechanisms from the remaining
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Figure 2. The specific heat of: TMCC� (present work); TMMC,� [19]; and TMCB,◦ [28],
around the phase transition regions. Below 52 K we have plotted the values reported by de
Jongeet al [12] for TMCC (M). The continuous line and the dashed line are the harmonic
lattice contributions to the specific heat of TMCC and TMCB respectively. In the inset, the
common base-line (the dotted line) used for the calculation of the phase transition thermodynamic
functions of the chloride crystals is also plotted.

contributions of the crystal lattice.
Earlier, the specific heat of the related crystals [N(CH3)4]MnCl3 (TMMC) and

[N(CH3)4]CdBr3 (TMCB) was reported [12, 16–19]. In addition, specific heat data for
TMCC and TMMC below 52 K were published in references [12] and [12, 17, 19]
respectively. Where the numericalCp-data were also included in the works cited, we
can compare the behaviour of this quantity for these compounds as a function of the
temperature. All of these measurements have been plotted together in figure 2. Leaving
aside the anomalies associated with the phase transitions, an excellent agreement is found for
the normal specific heat of TMCC and TMMC over a wide temperature range. Indeed, our
present measurements for TMCC agree very nicely with the low-temperature data reported
for this crystal [12]. On the other hand, the specific heats of the three compounds attain
similar values forT > 160 K, above the phase transition undergone by TMCB. As will be
seen later, the higher specific heat values which TMCB shows below this temperature are
easily explained by the presence of lower frequencies in its vibrational spectrum. However,
a corresponding-states law can be applied to the specific heat of TMCB in order to fit these
data to the results for the chloride compounds (TMCC and TMMC). An empirical factor
f = 1.16 for the temperature re-scaling of TMCB leads to the best fit for all three sets of
specific heat data. As a consequence, a common specific heat base-line can be easily drawn.
Therefore, the excess specific heat1Cp and, consequently, the values of the thermodynamic
functions for the two phase transitions of TMCC and that of TMMC can be worked out by
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subtracting this base-line from the measuredCp. The corresponding values for the II↔ III
phase transition in TMCC at 104 K were obtained by a simple extrapolation of theCp-curve
on both sides of the peak. The values for the excess thermodynamic functions of TMCC
across both transitions, obtained by numerical integration, are displayed in table 1.

Table 1. Values of the excess thermodynamic functions of TMCC across the two transitions.
These values have been calculated by numerical integration using the experimental data, and the
base-lines constructed as explained in the text.

1H/RK 1S/R

T = 104.5 K 35.17 0.339
T = 118.6 K 115.71 0.985

The entropy of the phase transition at 118.6 K in TMCC is close to the value reported by
Dunn et al [19] for TMMC at 126 K (1S/R = 1.024) and this result remains unchanged
when we use the common base-line obtained for both compounds. However, care must
be taken with the results for TMMC as the experiments were performed only by means
of the adiabatic pulse method, which can lead to significant errors when latent heat is
present. In both cases the phase transition entropy approximates toR ln 3, far below the
value exhibited by the TMCB phase transition atT = 156 K (1S ≈ R ln 8.8). This latter
value was calculated within the Nernst–Lindemann approximation [20, 21], and may be
somewhat overestimated.

The lattice harmonic contribution to the specific heat can be determined by means of
the lattice mode frequencies obtained from Raman and infrared measurements on TMCC
[5, 8]. The frequencies of the inactive modes have been estimated from data obtained from
related compounds [16, 22].

We have used these spectroscopic data to calculate the contributions adding up from
the lattice modes and the internal modes of the TMA groups. From group theory
applied to the organic tetrahedron (including the four methyl groups) we can obtain the
decomposition of the 45-dimensional vibrational representation as a sum of the irreducible
group representations, which accounts for the TMA internal modes:

045 = 3A1(1)+ 4E(2)+ 4T1(3)+ 7T2(3)+ A2(1).

A similar analysis applied to the space groupP63/m (point group 6/m) shows the 36-
dimensional representation atk = 0, describing the external (translational and rotational)
modes of the organic tetrahedron and inorganic octahedron, forZ = 2:

036 = 3Ag(1)+ 2Bg(1)+ 2E1g(2)+ 3E2g(2)+ 3Au(1)+ 4Bu(1)+ 4E1u(2)+ 3E2u(2).

Table 2 summarizes the frequency assignments used to construct the harmonic specific
heat. In general, the values assigned to TMCC are similar to those found for TMMC [5,
8] and TMCB (see [16] and references therein, [23]), with only slight differences in the
low part of the spectrum which are more pronounced for this last crystal. As expected, the
frequencies associated with the bending and stretching modes of the Br–Cd bonding are
smaller than in the case of Cl–Cd or Cl–Mn, as a result of the mass differences between the
two halogen ions. Different frequencies for the external movements of the molecular groups
should also be noted. In the upper extreme of the vibrational spectrum, all of the internal
frequencies of the tetramethylammonium groups are practically the same in all of these
compounds, because the corresponding modes are not coupled with the lower frequencies
associated with the translational and rotational modes of the molecular groups. It should be
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Table 2. Frequency assignments for TMCC and TMCB normal modes. (a) Translational and
rotational modes of the TMA and BX3 molecular groups.∗ represents estimated values obtained
from related compounds. (b) Tetramethylammonium internal modes.

(a)
Frequency (cm−1)

Symmetry TMCC TMCB Assignment Degeneracy

Ag 248 156 ν (chains) 1
Ag 80 40 R (chains) 1
Ag 50 70 R (TMA) 1
Bg 200∗ 130 ν (chains) 1
Bg 50∗ 60 T (TMA) 1
E1g 100 80 δ (chains) 2
E1g 50∗ 70 R (TMA) 2
E2g 164 56 T (TMA) 2
E2g 118 90 δ (chains) 2
E2g 74 105 δ (chains) 2
Au ωD = 60∗ 40 Acoustic 1
Au 50 60 T (TMA) 1
Au 170 130 ν (chains) 1
Bu 150∗ 130 ν (chains) 1
Bu 120∗ 90 δ (chains) 1
Bu 100∗ 105 δ (chains) 1
Bu 50∗ 70 R (TMA) 1
E1u ωD = 50∗ 50 Acoustic 2
E1u 220∗ 105 δ (chains) 2
E1u 135∗ 90 δ (chains) 2
E1u 80∗ 60 R (TMA) 2
E2u 170∗ 130 ν (chains) 2
E2u 120∗ 90 δ (chains) 2
E2u 50∗ 70 R (TMA) 2

(b)
Symmetry Frequency (cm−1) Assignment Degeneracy

A1 2922 νs (CH3) 1
A1 755 νs (C4N) 1
A1 1410 δs (CH3) 1
A2 220 τ (CH3) 1
E 2955 νa (CH3) 2
E 1171 νa (CH3) 2
E 366 δs (C4N) 2
E 1450 δa (CH3) 2
F1 1486 δa (CH3) 3
F1 1290 ρ (CH3) 3
F1 955 νa (CH3) 3
F1 3026 νd (CH3) 3
F1 320 τ (CH3) 3
F2 2922 νs (CH3) 3
F2 3026 νa (CH3) 3
F2 1486 δa (CH3) 3
F2 1410 δs (CH3) 3
F2 1290 ρ (CH3) 3
F2 455 δa (C4N) 3
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pointed out that the harmonic specific heat in the temperature range in which the various
phase transitions of these crystals are present is governed by the normal lattice modes related
to the internal movements of the TMA group and to the bending and stretching modes of
the metal–halogen bonds. These frequencies extend from 100 cm−1 to 1500 cm−1. The
contributions to the specific heat of the lower-frequency modes rapidly attain their saturated
values (given by the Dulong and Petit law) at relatively low temperatures, avoiding errors
in the estimated specific heat due to incorrect frequency assignments. In the case of TMCB,
this saturation is reached at lower temperatures than in the chloride crystals, and this explains
the higher specific heat values found in this range. However, when the complete contribution
of all of these modes is finally attained, at higher temperatures, the specific heat of all three
crystals must be the same, as the experiments confirm.

Figure 3. The thermal expansivity of TMCC along the crystallographic directionsc anda = b.
The heating rates were 10 K min−1.

For the calculation of the harmonic specific heat, Einstein functions have been used
for the optical modes, weighted with the corresponding degeneracies. The contribution of
the three acoustic modes has been calculated with Debye functions, with estimated cut-off
frequencies of about 50 cm−1. The total harmonic lattice contribution for TMCC, TMMC,
and TMCB is plotted in figure 2.

Figure 3 shows the dependence of the thermal expansivity of TMCC along thec- and
a-axes (αc andαa). As all of the directions perpendicular to thec-axis are isotropic in the
hexagonal phase, the experimental information permits us to retrieve the volume thermal
expansionα = αc + 2αa. However, below the hexagonal–monoclinic phase transition at
118 K, more experimental information would be required for a precise determination of the
thermal expansion tensor. The measurements were performed on cooling and heating at
various rates. The curves show two phase transitions at about 104 K and 118 K, and the
measured thermal hystereses, not displayed on this plot, for both phase transitions, were
of 6 K and 4 K, respectively. The first-order nature of the two phase transitions is also
confirmed by the jump of the thermal expansion curves at the two transition temperatures,
in agreement with our experimental specific heat results. As can be seen from the slopes of
both curves, the thermal expansion coefficient in the isotropic directions perpendicular to
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the c-axis (αa) is very much larger than that along thec-axis (αc). For example, at room
temperatureαa ≈ 4.4αc. This result is also observed in the axial isothermal compressibilities
(Ka

T = Kb
T andKa

T ≈ 5Kc
T ) along these directions in TMMC [3], and it is explained by

the higher crystal stiffness along the rigid inorganic chains as compared with the small
inter-chain electrostatic forces.

The behaviour of the thermal expansion around the two phase transitions is worth
analysing. On heating, the III→ II phase transition at 104 K is characterized by a
small increase of the cell dimensions in the plane perpendicular to thec-axis. However,
the cell volume remains practically unchanged due to a simultaneous contraction of the
pseudo-hexagonal axis. In this situation the TMA group reorientations inside the inorganic
chains are still avoided and the structure is ordered, a fact which is confirmed by Raman
experiments [8, 14]. The disorder of the organic groups comes in at the I phase transition,
where a noticeable increase of the cell volume (about 1%) takes place, as a result of the
simultaneous expansion along the three axes. The expansion is more pronounced in thea–b
plane, and the corresponding separation of the chains favours orientational disorder of the
TMA groups. This fact is also supported by the higher entropy value of the II↔ I phase
transition.

The anharmonic contribution to the specific heat could be established by thermo-
dynamical procedures if full experimental data for the elastic constants and the thermal
expansion coefficients of the crystal were available. In other cases, approximate rules such
as the Nernst–Lindemann relation can be used [20, 21]. However, the subtraction of the
harmonic specific heat (which in the following will be identified with the specific heat at
constant volume,Cv) from the experimental value ofCp allows us to obtain directly the
anharmonic contribution to the specific heat. In addition, the thermal expansion data permit
a direct calculation of the Grüneisen parameter(0) and the isothermal compressibility(KT ),
which describe the crystal anharmonicity as a function of the temperature.

From the thermodynamic relations

Cp − Cv = T V α2

KT
(1)

and

0 = αV

KTCv
(2)

whereV is the molar volume, andα is the volume thermal expansivity, we obtain0 and
KT as functions of the experimental data. For instance,

0 = Cp − Cv
T αCv

. (3)

Combining these data withCp and Cv, in figure 4 we show the behaviour of the
Grüneisen parameter and the isothermal compressibility for TMCC. Above the phase
transition temperature range,0 progressively attains a constant value. At 290 K,0 = 2.26,
which is a typical value for many solids at room temperature. At this temperature,KT is
3.47× 10−11 Pa−1, which compares well with the result obtained for isomorphous TMMC
from the axial compressibilities [3]:KT = 2Ka

T +Kc
T = 4.42× 10−11 Pa−1.

Moreover, the phase transition sequence exhibited by the isomorphous compound
TMMC at about 2.5 kbar is found to be the same as that of TMCC at atmospheric pressure
[3, 14]. This hint led some authors to propose a generalized pressure–temperature phase
diagram for all of the compounds of the family with the exception of TMCB [14, 24], similar
to the phase diagram describing the various phase transition sequences for the (TMA)2BX4

compounds [25, 26].
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Figure 4. The Gr̈uneisen parameter(0) and the isothermal compressibility(KT ) for TMCC,
obtained from the experimental specific heat and the thermal expansion measurements.

Taking the reported values for the lattice constants under hydrostatic pressure from
Peercyet al [3] we can calculate the size reduction of the TMMC unit cell from atmospheric

pressure(V = 470.95 Å
3
) to 2.5 kbar(V = 465.73 Å

3
). Throughout this pressure range,

the cell volume of TMMC remains smaller than that of TMCC at atmospheric pressure

(V = 486.3 Å
3
). This result is supported by the fact that the covalent radius of the Cd

atom is larger than that of the Mn atom.
In contrast, at atmospheric pressure, the TMMC cell dimensions in the plane

perpendicular to thec-axis (a = b = 9.151 Å) are larger than the ones for TMCC
(a = b = 9.139 Å). In this situation, the inorganic chains along thec-axis are closer
in TMCC, and the motions of the TMA groups between the chains are more strongly
hindered. As the I↔ II phase transition is associated with the TMA ordering, it follows
that the transition temperature is expected to increase with pressure.

When pressure is applied to TMMC, the lattice parametersa and b are considerably
reduced due to the low linear compressibility on this plane, and progressively approach the
values for TMCC. This effect can explain the fact that under high pressure (the threshold
value being about 1 kbar [8]), TMMC shows the same phase transition sequence as TMCC
at atmospheric pressure. This has been confirmed by different experiments [3, 14].

The orientational ordering of the TMA groups is also established for the hexagonal–
hexagonal ferroelectric phase transition of TMCB at 156 K [27, 28]. In this case,
the cell constant ‘a’ is larger (a = 9.388 Å) than in the chloride crystals. However,
calculations show that the separation of the inorganic· · ·Br3–Cd–Br3–Cd· · · chains is even
smaller, resulting from the larger size of the bromide ions. This can explain the higher
transition temperature of TMCB, and perhaps the large value for the transition entropy.
These two features are also observed for (TMA)2BX4 compounds when the bromide–
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chloride substitution takes place. However, further thermodynamic information (e.g. specific
heat measurements under pressure) would be required for a deeper understanding of the
equivalence between ion substitution and applied pressure.

4. Discussion of the symmetry properties and Landau potentials for TMCC

The analysis of symmetry properties and the description of the different excess magnitudes
within the framework of the Landau theory has already been given for the (ferroelectric)
TMCB [22, 28, 29] and (ferroelastic) TMMC [30] compounds belonging to the family of
TMCC, with relative success.

Whereas the symmetry properties of the principal order parameters (POP, as opposed
to secondary OP) driving the transitions in all of these compounds are well known [31],
the physical mechanisms at play are still very complex. Usually these POP, pertaining
to different points of the Brillouin zone, consist of the so-called pseudo-spin coordinates
embodying the reorientational dynamics of the TMA groups [32], coupled (linearly or not)
with components of the stress tensor (ferroelastic transitions) [33] or polarization vector
components (ferroelectric transitions) [34]. Further displacive contributions arising from the
rotations or translations of the MX6 octahedra chains cannot be neglected in general [8, 9].

The two phase transitions of TMCC are markedly distinct, and will be dealt with
separately in the discussion that follows for the sake of clarity.

4.1. TheI ↔ II transition

At a temperature of aboutT ≈ 118 K and ambient pressure, the following first-order proper
ferroelastic phase transition takes place in TMCC [9]:

P63/m (Z = 2)

phase I

←→ P21/m (Z = 2).

phase II

Raman scattering studies [8, 14] have shown, first, strong evidence in favour of a completely
ordered phase II, and second, the total absence of soft-mode behaviour, thus confirming the
pure order–disorder character of the transition. From symmetry considerations it can be
shown that only one POP(η) is involved in this transition [30, 31]; also, the presence
of the cubic invariants in the potential expansion forces the transition to be of first order,
in complete agreement with the experimental results. As regards the nature of the order
parameters, they include pseudo-spin coordinates issuing from some suitable Frenkel model
(two-, three- or six-well models) [27, 28, 35], bilinearly coupled to the(e1 − e2, e6) stress
tensor components of0+5 0

+
6 /E2g symmetry [36] (pseudo-proper ferroelastic). This latter

fact has been nicely demonstrated by the marked softening affecting the evolution of the
C11 andC66 elastic constants in the hexagonal phase near the transition temperature [6, 8],
which closely resembles the behaviour shown by the related ferroelastic compound TMMC
[8, 37]. In fact, the elastic data are slightly problematic: theC66-data were obtained with the
help of ultrasonic techniques, and come from an unpublished preliminary account by Braud
et al [8]. On the other hand, theC11- (andC33-) measurements were obtained by means
of the Brillouin scattering technique [6], and though the raw data look quite correct, the
discussion given by Levolaet al (for instance, altogether neglecting the first-order character
of the transition) is unsound and ought to be revised [30, 31].

Details about the connection between the different Frenkel models and the pseudo-spin
coordinates can be found in references [14, 28, 31, 32]. Although the six-well (6W) model
has proved to be the best suited for describing the disordered configuration of the TMA
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groups in the compounds TMMC [38] and TMCB [27], it is nonetheless unable by itself
to reach a completely ordered state of the TMA groups in phase II of TMCC. Therefore, if
the ordering process is to be led by this model, it has to be necessarily assisted by large-
amplitude anharmonic librations of the TMA groups (the pseudo-spin–phonon coupling
mechanism), resulting in a reconstructive transition, anyway [27, 28, 31]. Actually, if
we assume that phase II is completely ordered, as spectroscopic data seem to indicate,
we can hardly reconcile the value of the excess entropy jump across the first transition
(i.e. 1S ≈ R ln 2.68; see table 1), calculated with the given base-line, with the theoretical
value predicted by the 6W model(1S = R ln 6). These considerations must be handled with
great care [39], and by no means do they imply that the 6W model is automatically ruled
out; indeed, for the related compound TMMC, whilst the calorimetric results mentioned
above [19] are clearly in favour of a 3W model, the recently achieved structural resolution
of both phases has shown beyond doubt that the 6W model gives a better description of the
orientational disorder [38]. Further, more selective experiments are needed to decide about
the nature of the orientational disorder in phase I in TMCC.

The Landau potential describing this I↔ II transition, developed to the lowest order,
has been calculated elsewhere in detail [30, 31]. This potential comprises the contributions
from the POP itself, from the elastic terms and from the interaction between them, and has
been used to predict the thermal evolution of the elastic constants in the hexagonal phase
only, since the domain pattern of the ferroelastic phases makes their observation impossible.
In practice, it turns out that the ‘effective’ or ‘renormalized’ potential to be compared with
the actualCp-measurements is essentially a simple 234 classical potential [31].

Figure 5. A plot of (T /1Cp)2 versus temperature obtained from the experimental specific heat
and the base-line, as explained in the text.

It should be emphasized that the base-line, however carefully estimated, is arbitrary
to a certain extent. Hence, the excess quantities are not absolute, but rather depend on
the method of construction explained above. Bearing this in mind, we have compared
the experimental calorimetric results with the predictions of such a development. There
exist several highly significant ‘test’ plots which can reveal the different scenarios [28,
33]. One such is the(T /1Cp)2 versusT plot: whenever this function is convex (negative
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curvature), the transition will be of first order because of the presence of a third-order
invariant; otherwise, if this test quantity appears to be a straight line, the transition is first
order because of a negative fourth-order term (see the appendix). We have thus plotted
in figure 5 the quantity(T /1Cp)2 for TMCC in the temperature range between the two
transitions. It displays an unambiguous concave pattern (positive curvature), analogous to
the one found for the isomorphous compound TMCB [28]. At this stage, these results
deserve some thought because, as it stands, simple 2346 potentials (i.e. includingη2-, η3-,
η4- andη6-terms) are unable to explain this behaviour (see the appendix).

Admittedly, we can modify the 2346 potentials in a number of ways, by relaxing some
of the normally accepted hypotheses so as to obtain the ubiquitous concave pattern. This
can be achieved most easily by formally adding another asymmetric term, say the fifth-
order term, to the limited development. The concave behaviour will result if some trade-off
between the third- and fifth-order terms is respected. Anyway, the need for extending the
development at least to the sixth order seriously increases the complexity of the treatment,
for higher-order coupling terms have to be taken into account. As a result, the expression
for the free-energy ends up depending upon so many unknown parameters that their fitting
to the ensemble of experimental data provides a less significant test of the overall adequacy
of the Landau description to the data [34].

There is still another possibility. Less simply, this behaviour can be reproduced
with developments limited up to the fourth order, by assuming a non-linear behaviour of
the second-order coefficient, or even assuming that the ‘constant’b-coefficient eventually
depends onT [22]. These odd effects in the effective potential may arguably result—given
the proximity of the two transitions—from the coupling to the other POP, on account of
various non-Landau precursor effects. This point has to be explored further.

In order to resolve this dilemma, we think it necessary to perform some complementary
and independent measurements to gain additional insight into the transition mechanisms.
Structural studies of both ordered and disordered phases, emphasizing the study of the
TMA groups and the re-determination of the evolution of the elastic constantsC66 andC11

in the hexagonal phase with the help of ultrasonic techniques, have the utmost importance.

4.2. TheII ↔ III transition

The situation in the lowest-temperature phase is much more complex. To begin with, let
us recall that phase III exhibits the doubling and trebling of the lattice parametersa and
c respectively, with respect to those of the hexagonal unit cell (a sixfold unit-cell volume
increase). At a temperature of nearlyT ≈ 104 K and ambient pressure, the following
first-order isoclass phase transition takes place in TMCC [1, 9]:

P21/m (Z = 2)

phase II

←→ P21/b (Z = 12).

phase III
First, some general remarks about the transition follow, and thereafter we will very briefly
survey the problems that arise when we try to proceed with the Landau approach. A report
dealing specifically with the construction of the generalized phase diagram is in preparation
[40]. Clearly, the fact that these space groups are group–subgroup related enables one
to study the transition within the framework of the Landau theory. Also, the lowest-
temperature symmetry group conveys an important reduction of translational symmetry,
which necessarily involves the appearance of many antiphase domains; eventually, these
domains can very seriously entangle its structural resolution [38]. Finally, this transition
taking place between two orientationally ordered phases certainly precludes the POP from
being a pseudo-spin coordinate. The nature of these POP remains to be elucidated.
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Table 3. (a) Symmetries of the principal order parametersη, ξ , andq, along with examples of
transitions where these POP intervene. (b) A description of the different phases of TMCC in
terms of the three order parametersη, ξ , andq (see the text).

(a)
Symmetry Phase transition explained Compound

η(0+5 0
+
6 /E2g) P63/m (Z = 2)↔ P21/b (Z = 4) TMMC [31]

q(1213/E1) P63/m (Z = 2)↔ P61 (Z = 6) TMCB [29]
ξ(M−1 /Au) P63/m (Z = 2)↔ P21/b (Z = 4) TMMC [31]

(b)
Phase (η1, η2) (ξ1, ξ2, ξ3) (q1, q2, q3, q4) Space group

I η1, η2 = 0 ξ1 = ξ2 = ξ3 = 0 q1 = q2 = q3 = q4 = 0 P63/m (Z = 2)
II η1 6= 0, η2 6= 0 ξ1 = ξ2 = ξ3 = 0 q1 = q2 = q3 = q4 = 0 P21/m (Z = 2)
III η1 6= 0, η2 6= 0 ξ1 6= 0, ξ2 = ξ3 = 0 q1 = q2 6= 0, q3 = q4 6= 0 P21/b (Z = 12)
Virtual η1 6= 0, η2 6= 0 ξ1 = ξ2 = ξ3 = 0 q1 = q2 6= 0, q3 = q4 6= 0 P21/m (Z = 6)
phase

As mentioned above, we have worked out Landau potentials able to describe
satisfactorily the phase transitions taking place in TMCB [28] and TMMC [30]
independently. Now, the Landau potentials required to describe the phase transitions in
TMCC (and the II↔ III transition in particular) are much more involved. In a way, solving
the problem for TMCC amounts to giving a complete picture for the whole family; TMCC is,
so to speak, the cornerstone of the unified description, and we claim that it should certainly
not be analysed in isolation. In fact, three POP of different symmetries,η(0), q(1), and
ξ(M) (see table 3), have been shown to take account of the ensemble of phase transitions
occurring in these compounds [28, 31], and—what is most remarkable—all three come into
play when one tries to explain the stabilization of phase III of TMCC. This scheme is the
most natural that can be advanced, since it supports the existence of phase III, and all of
the intermediate phases withZ = 2, Z = 4, andZ = 6 appearing in the compounds of
the family, with no need to introduce any supplementary OP. Another hypothesis has been
proposed [31], suggesting that the lattice instability takes place at the point U, (0, 1

2,
1
3),

of the Brillouin zone [36]. But this would require the introduction of a new OP able to
describe the I↔ III direct transition with the absence of any intermediate phase, a process
that has never been observed experimentally. We think that such a mechanism is not very
realistic.

Also, symmetry arguments lead naturally to a proposal of the existence of an inter-
mediate hypothetical phase resulting from the interaction of the POPη andq:P21/m (Z =
6) (see table 3). Even if this ‘virtual’ phase has not been detected up to now, it appears
nevertheless as an important element in the construction of a truly unified family phase
diagram [40, 41].

Let us note here that the determination, within the framework of the Landau theory,
of the different topologies of the phase diagrams arising from potentials allowing two
interacting OP, albeit complex, can be worked through in some cases [42–44]. Now,
the description of the generalized phase diagram (and, at the same cost, the description of
phase III of TMCC) requires introducing at least three interacting POP. In so doing, we are
disregarding the transition to the highest common para-phaseP63/mmc (Z = 2) (phase
I′), which takes place at such a high temperature that it can be safely disconnected from
the other phases [31]. Up to now we have not written down the full potential describing
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phase III, since the mathematical manipulations soon become very cumbersome; as far as
we know, this painstaking procedure has never been conducted. Thus, the completion of
the Landau description is still pending.

In order to complete the experimental study of this compound we propose some
experiments, such as the study of solid solutions TMMB–TMCB and TMCB–TMCC,
pursuing the competition between the OPη andq and, as mentioned above, the completion
of the structural study of the low-temperature ferroelastic phases. Of course, enlarging the
T , P domain of study of all of the techniques should be very helpful.

5. Conclusions

From our experimental results, the following conclusions concerning the structural phase
transitions occurring in TMCC can be drawn.

(1) Our specific heat and thermal expansion measurements confirm the existence of two
structural first-order phase transitions at 104 K and 118 K.

(2) In our specific heat measurements, the values associated with the anomalous
transition entropy change confirm the order–disorder character assigned to the phase
transition at 118 K.

(3) An indirect method for estimating the anharmonic quantities such as the isothermal
compressibility and the Grüneisen parameter has been used. Although these procedures
might lead to noticeable errors in the final results, the order of magnitude of these
quantities—hard to establish by direct measurements—is easily calculated.

(4) Moreover, the group theoretical and the still-to-be-completed Landau treatments
reveal the stunning complexity inherent to these systems. More experimental data on TMCC
are needed to help in establishing the full picture of this family of compounds.

(5) The phase transition at 154 K mentioned by other authors [2, 6] was not detectable
in our measurements.
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Appendix

In this appendix the connection between the concavity of the(T /1Cp)
2 versusT plot and

the 2346-type Landau potentials will be demonstrated on general grounds. Clearly a sixth-
order 2346 potential is only meaningful as long as the coefficient of the fourth-order term
happens to be negative; however, in what follows we will keep our discussion general. The
purpose of these calculations consists in evaluating the sign of the second derivative of
this quantity with respect to the temperature, for the particular case of the 2346 potential.
This kind of analysis has already been performed elsewhere for the solvable 246 and 234
potentials [28, 41]. Nevertheless the present analysis does not depend on the detailed
knowledge of the solutions, but is mainly concerned with the structure of the potential itself



The phase transition sequence in TMCC 3413

(let us stress here that no analytical solution in closed form is known for the 2346 potential).
The 2346 excess potential can be written as

8 = 1
2aη

2+ 1
3bη

3+ 1
4cη

4+ 1
6dη

6 (A1)

whereb, c, d are constant coefficients, and we taked > 0. Now, following Landau, the
coefficient of the quadratic term depends linearly on the temperature:

a(T ) = α(T − T0) with α > 0 (A2)

whereα is a constant. (Remark concerning the notation: in this appendix we omit altogether
the 1 that usually tags excess quantities; we write8 instead of18, for instance.) We
calculate the transition entropy and specific heat of the transition with the help of the
classical expressions

S = −∂8
∂T

Cp = T ∂S
∂T
. (A3)

Combining (A1)–(A3) we then get(
T

Cp

)2

= (−αηη′)−2 (A4)

adopting the useful shorthand

η′ = ∂η

∂T
.

As regards the true minimum of the potential, it is necessarily a local minimum, so it
satisfies the following two equations:

∂8

∂η
= η(a + bη + cη2+ dη4) = 0 (A5a)

and

∂28

∂η2
= (a + bη + cη2+ dη4)+ η(b + 2cη + 4dη3) > 0. (A5b)

From the examination of theη 6= 0 solution, corresponding to the ferroelastic phase, it can be
concluded that the stability condition (A5b) requires sgn[η] = sgn[b+2cη+4dη3]. Besides
this, the assumption thatd > 0 can now be justified on account of the global stability of
the potential, for when high values of the saturated OPη are considered, equation (A5b)
has still to be obeyed. Further, taking the derivative of equation (A5a) with respect to the
temperature, we arrive at this useful expression:

∂

∂T
(a + bη + cη2+ dη4) = 0⇒ η′

−α
b + 2cη + 4dη3

(A6)

which permits us to turn into algebraic equations all of the expressions involving higher
derivatives ofη with respect toT . Moreover, from (A6) it nicely leads to sgn[η] = −sgn[η′]
as can be expected. At this point we are now able to take the successive derivatives of
(T /Cp)

2 with respect toT . We obtain for the ferroelastic phase((
T

Cp

)2)′
= 2

α3

(
b

η3
− 8d

)
(A7)

and ((
T

Cp

)2)′′
= −6b

α3

η′

η4
. (A8)
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Clearly we have that

sgn

[((
T

Cp

)2)′′]
= sgn[−bη′] = sgn[bη]. (A9)

It is straightforward to show by inspection that the quantitybη is always negative. If the
c-coefficient were positive, the only possibly negative term—that is to say, the only term
in the potential that could compete with the second-order term—would be the third-order
term, which can stabilize a minimum forη 6= 0 even before the sign of the second-order
term flips down. This mechanism explains the setting in of a first-order phase transition at a
temperature higher thanT0, such thatη has the opposite sign tob, and hencebη < 0. Next,
when thec-coefficient is negative, the fourth-order term also contributes to decreasing the
potential, along with the third-order one. Nevertheless, the point is that the fourth-order
term is symmetric (even), so, however small the ratiob/c is, it is always the third-order—
asymmetric—term which determines for the absolute minimum, and we get againbη < 0.
Further, the examination of equation (A7) reveals that the quantity(T /Cp)

2 is, in all cases, a
decreasing function of the temperature. We should not fail to mention that for the particular
instance whereb = 0 (24 and 246 potentials), the quantity(T /Cp)2 gives a straight line of
negative slope.

We can therefore state as a conclusion that for the 2346 Landau potentials the test
(T /Cp)

2 quantity is always a decreasing convex (negative-curvature) or straight (zero-
curvature) function of the temperature.
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